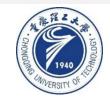
Ada-Ranker: A Data Distribution Adaptive Ranking Paradigm for Sequential Recommendation (SIGIR_2022)

Xinyan Fan
xinyan.fan@ruc.edu.cn
Gaoling School of Artificial
Intelligence, Renmin University of
China
Beijing Key Laboratory of Big Data
Management and Analysis Methods

Beijing, China


Jianxun Lian jianxun.lian@microsoft.com Microsoft Research Asia Beijing, China

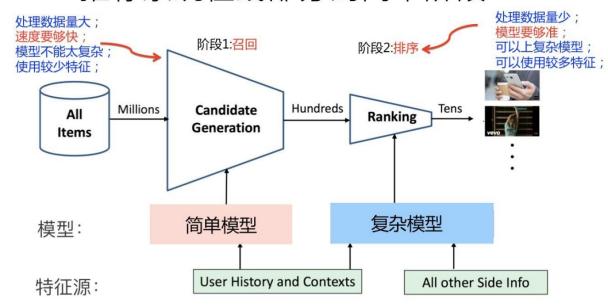
Zheng Liu zhengliu@microsoft.com Microsoft Research Asia Beijing, China Wayne Xin ZhaoB
batmanfly@gmail.com
Gaoling School of Artificial
Intelligence, Renmin University of
China
Rejiing Key Laboratory of Rig Data

Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing Academy of Artificial Intelligence Beijing, China Chaozhuo Li cli@microsoft.com Microsoft Research Asia Beijing, China

Xing Xie
xingx@microsoft.com
Microsoft Research Asia
Beijing, China

2022. 6. 1 • ChongQing

- 1.Background
- 2.Method
- 3. Experiments



Background

- Offline training the model, freezing the parameters, and deploying it for online serving.
 - Cannot adapt to dynamic serving circumstances, making rankers' performance compromised
- Propose a new training and inference paradigm, termed as *Ada-Ranker*.
 - Adaptively modulate parameters of a ranker according to the data distribution of the current group of item candidates

推荐系统在线部分的两个阶段

Over view

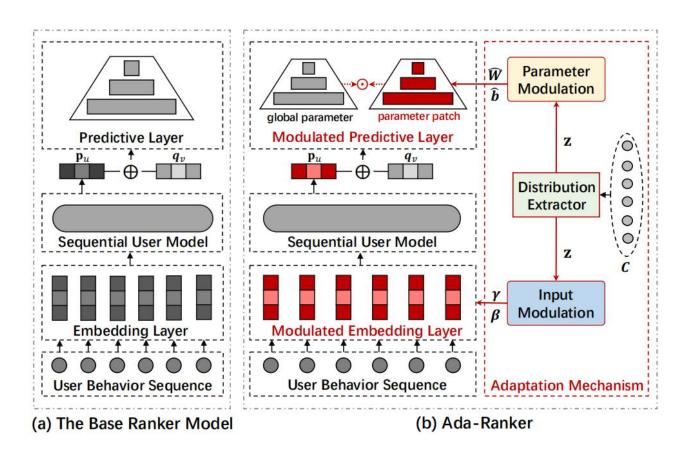


Figure 1: An overview of the traditional sequential model (a) and Ada-Ranker paradigm (b). We use colored elements to indicate the new components in Ada-Ranker.

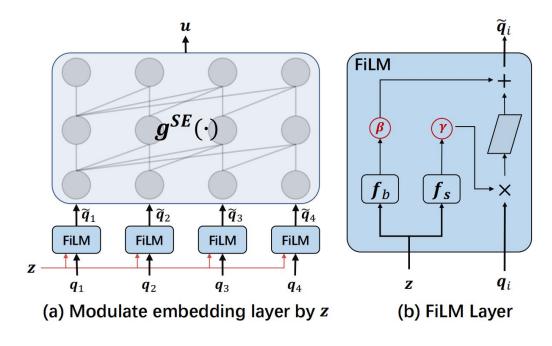


Figure 2: An illustration of the input modulation.

A Standard Sequential Ranker Architecture

$$Q_u = Q(\mathbf{x}_u) = \{\mathbf{q}_{v_1}, \mathbf{q}_{v_2}, ..., \mathbf{q}_{v_n}\}.$$
 (1)

$$\mathbf{p}_u = g^{SE}(Q_u). \tag{2}$$

$$\hat{y}_{uv} = g^{PRED}(\mathbf{p}_u, \mathbf{q}_v) = MLP(\mathbf{p}_u, \mathbf{q}_v). \tag{3}$$

$$\hat{y}_{uv} = f(\mathbf{x}_u, v) = g^{PRED}(g^{SE}(Q(\mathbf{x}_u)), \mathbf{q}_v). \tag{4}$$

item candidates: $C = \{v_i\}_{i=1}^m$

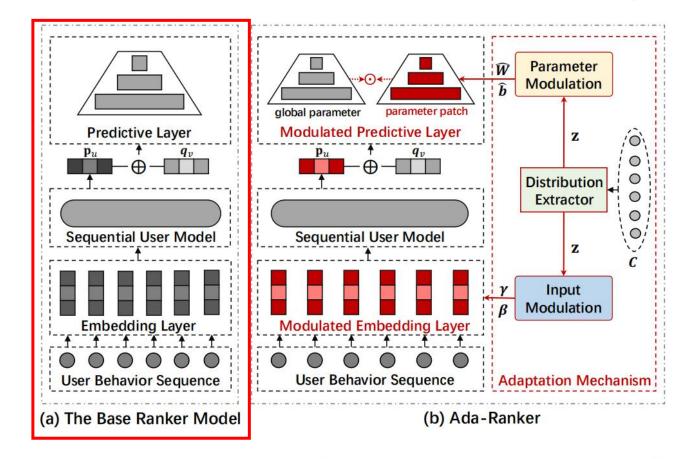


Figure 1: An overview of the traditional sequential model (a) and Ada-Ranker paradigm (b). We use colored elements to indicate the new components in Ada-Ranker.

Data Distribution Learning from the Ranking C

· Neural Processes Encoder

$$\mathbf{r}_j = MLP^{(NP)}(\mathbf{q}_j). \tag{5}$$

$$\mathbf{r} = (\mathbf{r}_1 + \mathbf{r}_2 + \dots \mathbf{r}_m)/m. \tag{6}$$

Reparameterization

$$\mathbf{s} = ReLU(\mathbf{W}_{s}\mathbf{r}),\tag{7}$$

$$\mu = \mathbf{W}_{\mu}\mathbf{s}, \log \sigma = \mathbf{W}_{\sigma}\mathbf{s}.$$
 (8)

$$\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\epsilon} \odot \boldsymbol{\sigma}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}),$$
 (9)

where ⊙ means the element-wise product operation.

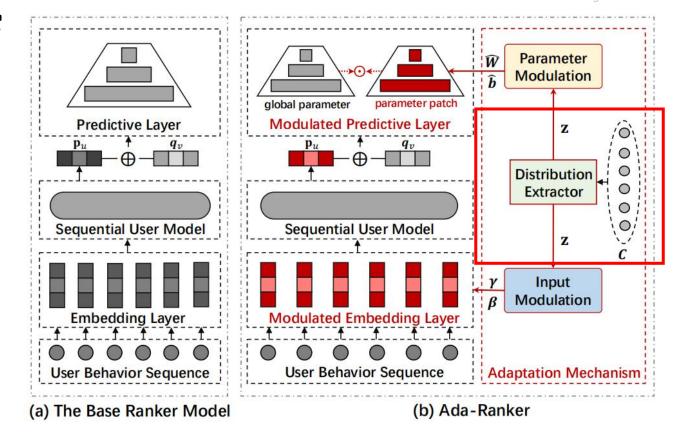


Figure 1: An overview of the traditional sequential model (a) and Ada-Ranker paradigm (b). We use colored elements to indicate the new components in Ada-Ranker.

Input Modulation

Modeling Data Distributions as Adaptation Conditions

$$\gamma = f_s(\mathbf{z}), \quad \beta = f_b(\mathbf{z}), \tag{10}$$

where f_s and f_b are two neural networks with different parameters, formulated as: $f(\mathbf{z}) = \mathbf{w}_2 ReLU(\mathbf{W}_1 \mathbf{z} + \mathbf{b}_1) + b_2$. The latent representations of item sequence are then adjusted by:

$$\tilde{\mathbf{q}}_t = \gamma \mathbf{q}_t + \beta. \tag{11}$$

Here, f_s and f_b are shared for all items in behavior sequence.

Parameter Modulation

· Adaptation by Model Patch

$$\widehat{\mathbf{W}}_k = MLP^{(w_k)}(\mathbf{z}), \quad \widehat{\mathbf{b}}_k = MLP^{(b_k)}(\mathbf{z}), \tag{12}$$

$$\widetilde{\mathbf{W}}_k = \mathbf{W}_k \odot \widehat{\mathbf{W}}_k, \ \widetilde{\mathbf{b}}_k = \mathbf{b}_k + \widehat{\mathbf{b}}_k,$$
 (13)

where \odot denotes the element-wise multiplication and k means the k-th layer of the ranker's MLP. Let h denote the input dimension and d denote the output dimension, we have $\mathbf{W}_k, \widehat{\mathbf{W}}_k, \widetilde{\mathbf{W}}_k \in \mathbb{R}^{h \times d}$ and $\mathbf{b}_k, \widehat{\mathbf{b}}_k, \widetilde{\mathbf{b}}_k \in \mathbb{R}^d$. We will replace the original MLPs' parameters \mathbf{W}_k by $\widetilde{\mathbf{W}}_k$ and \mathbf{b}_k by $\widetilde{\mathbf{b}}_k$. In this way, a global scoring function $g^{PRED}(\cdot)$ is adapted into a local scoring function $\widetilde{g}^{PRED}(\cdot)$.

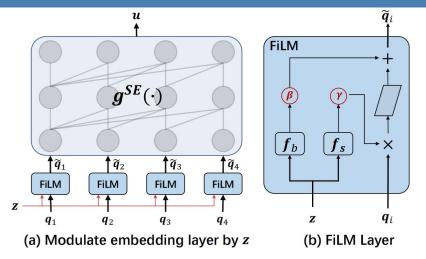


Figure 2: An illustration of the input modulation.

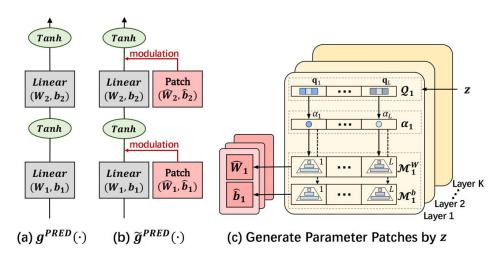


Figure 3: An illustration of the parameter modulation.

Parameter Modulation

· Learning with Parameter Pool

Difficult to directly optimize MLPs to approximate arbitrary real-valued vectors, especially when the training sample is not sufficient.

Specifically, we have a parameter pool \mathcal{M} with L base parameters: $\mathcal{M} = \{M_1, M_2, ..., M_L\}$, where each M_i has the same shape with the MLP parameter \mathbf{W} of the ranker. Then, the parameter patch $\widehat{\mathbf{W}}$ is composited by a linear combination of \mathcal{M} as follows:

$$\widehat{\mathbf{W}} = \sum_{i=1}^{L} \alpha_i \mathbf{M}_i, \tag{14}$$

The coefficients α_i are determined by a set of reading heads $Q = \{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_L\}$:

$$a_i = \mathbf{z} \cdot \mathbf{q}_i, \tag{15}$$

$$\alpha_i = \frac{\exp(a_i)}{\sum_{j=1}^L \exp(a_j)}, \forall i = 1, 2, ..., L,$$
 (16)

where \mathbf{q}_* are learnable vectors which have the same shape with \mathbf{z} . We use individual parameter pools \mathcal{M}_k , Q_k for each layer of the MLP parameters in $g^{PRED}(\cdot)$ (e.g., \mathbf{W}_k in the k-th layer). The case of the bias parameters \mathbf{b}_* is the same, which is omitted here.

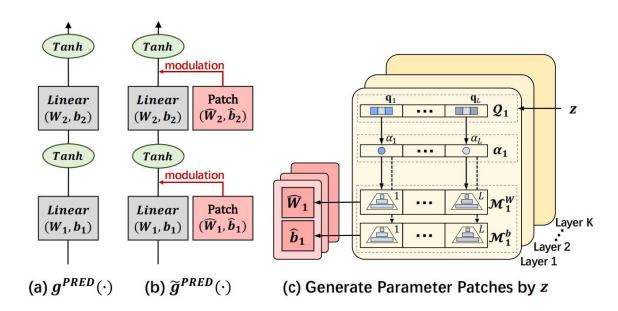


Figure 3: An illustration of the parameter modulation.

Optimization and Discussion

$$\mathcal{L} = \frac{1}{|\Gamma|} \sum_{(u,v) \in \Gamma} -y_{u,v} \log \tilde{y}_{uv} - (1 - y_{u,v}) \log(1 - \tilde{y}_{uv}), \quad (17)$$

Table 1: Statistics of datasets after preprocessing.

Dataset	# Users	# Items	# Actions	# Avg.len	Sparsity	#Categories
ML10M	69,878	10,676	10,000,047	143	98.66%	18
Taobao	487,813	787,094	24,938,811	34	99.99%	20
Xbox	1,000,000	6,071	25,315,983	15	99.58%	12

Table 2: Performance comparison of seven base models and Ada-Ranker on three datasets.

Datasets	Models	MF		GRU4Rec			SASRec		NARM		NextItNet		SHAN		SRGNN	
		GAUC	NDCG	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG	
ML10M	Base	- The state of the	0.6942	The second secon		The state of the s		000000000000000000000000000000000000000				Providence and the second				
	Ada-Ranker	0.8807	0.7121	0.9279	0.7932	0.9214	0.7783	0.9261	0.7879	0.8778	0.7069	0.8816	0.7164	0.9161	0.7676	
Taobao	Base	0.8363	0.6605	0.8734	0.7208	0.8707	0.7211	0.8707	0.7177	0.8482	0.6872	0.8609	0.7094	0.8637	0.7105	
	Ada-Ranker	0.8512	0.6907	0.8888	0.7490	0.8864	0.7481	0.8881	0.7439	0.8625	0.7079	0.8653	0.7106	0.8791	0.7322	
Xbox	Base	0.9036	0.7676	0.9388	0.8302	0.9323	0.8172	0.9368	0.8258	0.9343	0.8222	0.9217	0.8022	0.9336	0.8212	
	Ada-Ranker	0.9123	0.7897	0.9451	0.8438	0.9382	0.8291	0.9412	0.8354	0.9401	0.8336	0.9282	0.8131	0.9426	0.8384	

Table 3: Performance comparison with eight different baselines based on two base models (GRU4Rec and SASRec). The best performance and the second best performance methods are denoted in bold and underlined, respectively. The *p*-value of significance test is performed in the NDCG metrics of Ada-Ranker with the corresponding best baseline method (underlined).

		GRU4Rec as base model						SASRec as base model						
Methods	ML10M		Taobao		Xbox		ML10M		Taobao		Xbox			
	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG		
Base	0.9187	0.7781	0.8734	0.7208	0.9388	0.8302	0.9106	0.7616	0.8707	0.7211	0.9323	0.8172		
DNS	0.9005	0.7512	0.8646	0.7200	0.9254	0.8182	0.8942	0.7411	0.8632	0.7183	0.9219	0.8125		
GSF _{concat}	0.9150	0.7744	0.8903	0.7433	0.9335	0.8261	0.9072	0.7623	0.8858	0.7400	0.9308	0.8201		
GSF_{avq}	0.9205	0.7760	0.8860	0.7370	0.9390	0.8325	0.9116	0.7622	0.8798	0.7314	0.9353	0.8270		
GSF_{trm}	0.9232	0.7815	0.8865	0.7366	0.9429	0.8414	0.9161	0.7700	0.8836	0.7351	0.9366	0.8278		
PD	0.9254	0.7818	0.8913	0.7387	0.9373	0.8216	0.9196	0.7705	0.8878	0.7323	0.9325	0.8137		
DecRS	0.9247	0.7881	0.8785	0.7306	0.9427	0.8367	0.9195	0.7699	0.8776	0.7299	0.9345	0.8227		
DLCM	0.9240	0.7851	0.8835	0.7366	0.9426	0.8374	0.9177	0.7713	0.8793	0.7347	0.9376	0.8272		
PRM	0.9244	0.7863	0.8829	0.7397	0.9442	0.8396	0.9181	0.7731	0.8788	0.7345	0.9379	0.8288		
AdaRanker	0.9279	0.7932	0.8888	0.7490	0.9451	0.8438	0.9214	0.7783	0.8864	0.7481	0.9382	0.8291		
<i>p</i> -value	7.02	e-07	7.64	e-09	0.00)424	0.00	0215	5.39	e-12	0.1586			

Table 4: Results of ablation Study.

	Methods	ML	10M	Tac	bao	Xbox		
	Methods	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG	
	Base (GRU4Rec)	0.9187	0.7781	0.8734	0.7208	0.9388	0.8302	
(1)	avg	0.9238	0.7853	0.8792	0.7349	0.9423	0.8384	
	w/o FiLM	0.9261	0.7899	0.8861	0.7463	0.9444	0.8416	
(2)	add_bias	0.9273	0.7921	0.8876	0.7472	0.9437	0.8422	
	diff γ , β	0.9260	0.7889	0.8881	0.7481	0.9429	0.8392	
	w/o mem_net	0.9243	0.7863	0.8855	0.7459	0.9407	0.8357	
	w/o global_para	0.9209	0.7819	0.8879	0.7448	0.9437	0.8411	
	free_para	0.9269	0.7907	0.8851	0.7445	0.9442	0.8408	
(3)	add_bias (1 layer)	0.9257	0.7887	0.8843	0.7409	0.9438	0.8409	
	add_bias (2 layers)	0.9263	0.7894	0.8849	0.7415	0.9433	0.8396	
	#slots $L=5$	0.9260	0.7896	0.8881	0.7483	0.9444	0.8417	
	#slots $L=15$	0.9268	0.7909	0.8880	0.7480	0.9447	0.8423	
	Ada-Ranker	0.9279	0.7932	0.8888	0.7490	0.9451	0.8438	

Table 5: Comparisons of different training strategies.

	Training	GRU4Rec								
Methods		ML10M		Tac	bao	Xbox				
	Strategies	GAUC	NDCG	GAUC	NDCG	GAUC	NDCG			
Base	Train Θ	0.9187	0.7781	0.8734	0.7208	0.9388	0.8302			
	$\emptyset \Rightarrow \Theta + \Phi$	0.9279	0.7905	0.8805	0.7314	0.9434	0.8399			
Ada-Ranker	$\Theta \Rightarrow \Theta + \Phi$	0.9288	0.7943	0.8906	0.7462	0.9488	0.8511			
	$\Theta \Rightarrow \Phi$	0.9279	0.7932	0.8888	0.7490	0.9451	0.8438			

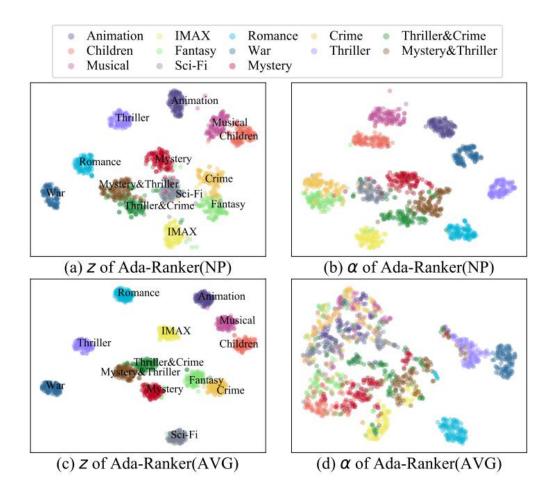


Figure 4: t-SNE plots for distribution representation z (a and c) and coefficients α of memory network (b and d), based on two different types of distribution extractor: NP and AVG. The dataset is ML10M.

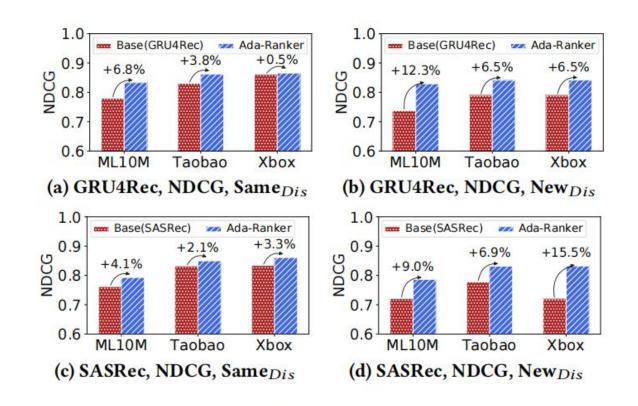


Figure 5: NDCG scores of Ada-Ranker with two base models {GRU4Rec, SASRec} on three datasets {ML10M, Taobao, Xbox} under different distribution settings. Same_{Dis} means test set is under the same distribution as training set. New_{Dis} means test set is generated from a new data distribution.

ATAI Advanced Technique of Artificial Intelligence

Thank you!

